Cyclic stretch translocates the alpha2-subunit of the Na pump to plasma membrane in skeletal muscle cells in vitro.

نویسندگان

  • Xiao Yuan
  • Songjiao Luo
  • Zhu Lin
  • Yong Wu
چکیده

The Na+-K+-ATPase and its regulation is important for maintaining membrane potential and transmembrane Na(+) gradient in all skeletal muscle cells and thus is essential for cell survival and function. In our previous study, cyclic stretch activated the Na pump in cultured skeletal muscle cells. Presently, we investigated whether this stimulation was the result of translocation of Na+-K+-ATPase from endosomes to the plasma membrane, and also evaluated the role of phosphatidylinositol 3-kinase (PI 3-kinase), the activation of which initiated vesicular trafficking and targeting of proteins to specific cell compartments. Skeletal muscle cells were stretched at 25% elongation continuous for 24h using the Flexercell Strain Unit. The plasma membrane and endosome fractions were isolated and Western blotted to localize the Na+-K+-ATPase alpha1- and alpha2-subunit protein. The results showed stretch increased Na+-K+-ATPase alpha1- and alpha2-subunit protein expression in plasma membrane fractions and decreased it in endosomes. The alpha2-subunit had a more dynamic response to mechanical stretch. PI 3-kinase inhibitors (LY294002) blocked the stretch-induced translocation of the Na+-K+-ATPase alpha2-subunit, while LY294002 had no effect on the transfer of alpha1-subunit. We concluded that cyclic stretch mainly stimulated the translocation of the alpha2-subunit of Na+-K+-ATPase from endosomes to the plasma membrane via a PI 3-kinase-dependent mechanism in cultured skeletal muscle cells in vitro, which in turn increased the activity of the Na pump.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Na,K-ATPase in skeletal muscle: two populations of beta-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules.

We used immunological approaches to study the factors controlling the distribution of the Na,K-ATPase in fast twitch skeletal muscle of the rat. Both alpha subunits of the Na,K-ATPase colocalize with beta-spectrin and ankyrin 3 in costameres, structures at the sarcolemma that lie over Z and M-lines and in longitudinal strands. In immunoprecipitates, the alpha1 and alpha2 subunits of the Na,K-AT...

متن کامل

Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance

During excitation, muscle cells gain Na(+) and lose K(+), leading to a rise in extracellular K(+) ([K(+)]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na(+),K(+)-ATPase (also known as the Na(+),K(+) pump) is often essential for adequate clearance of extracellular K(+). As a result o...

متن کامل

Na+-K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics.

The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscl...

متن کامل

Neuronal function and alpha3 isoform of the Na/K-ATPase.

The Na/K-ATPase is a complex of integral membrane proteins that carries out active transport of sodium and potassium across the cell plasma membrane, and maintains chemical gradients of these ions. The alpha subunit of the Na/K-ATPase has several isoforms that are expressed in a cell type- and tissue-dependent manner. In adult vertebrates, while kidney cells express mostly alpha1, muscle and gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 348 2  شماره 

صفحات  -

تاریخ انتشار 2006